Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.12.511994

ABSTRACT

The spike protein in the virus SARS-CoV-2 (the causative agent of COVID-19) recognizes the host cell by binding to the peptidase domain (PD) of the extracellular enzyme Angiotensin-converting Enzyme 2 (ACE2). A variety of carbohydrates could be attached to the six asparagines in the PD, resulting in a heterogeneous population of ACE2 glycoforms. Experiments have shown that the binding affinity of glycosylated and deglycosylated ACE2 to the virus is virtually identical. In most cases, the reduction in glycan size correlates with stronger binding, which suggests that volume exclusion, and hence entropic forces, determine the binding affinity. Here, we quantitatively test the entropy-based hypothesis by developing a lattice model for the complex between ACE2 and the SARS-CoV-2 spike protein Receptor-binding Domain (RBD). Glycans are treated as branched polymers with only volume exclusion, which we justify using all atom molecular dynamics simulations in explicit water. We show that the experimentally measured changes in the ACE2-RBD dissociation constants for a variety of engineered ACE2 glycoforms are well accounted for by our theory, thus affirming that ACE2 glycans have only a weak, entropic effect on RBD binding.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.30.405340

ABSTRACT

Severe acute respiratory syndrome (SARS) and novel coronavirus disease (COVID-19) are caused by two closely related beta-coronaviruses, SARS-CoV and SARS-CoV-2, respectively. The envelopes surrounding these viruses are decorated with spike proteins, whose receptor binding domains (RBDs) initiate invasion by binding to the human angiotensin-converting enzyme 2 (ACE2). Subtle changes at the interface with ACE2 seem to be responsible for the enhanced affinity for the receptor of the SARS-CoV-2 RBD compared to SARS-CoV RBD. Here, we use Elastic Network Models (ENMs) to study the response of the viral RBDs and ACE2 upon dissassembly of the complexes. We identify a dominant detachment mode, in which the RBD rotates away from the surface of ACE2, while the receptor undergoes a conformational transition which stretches the active-site cleft. Using the Structural Perturbation Method, we determine the network of residues, referred to as the Allostery Wiring Diagram (AWD), which drives the large-scale motion activated by the detachment of the complex. The AWD for SARS-CoV and SARS-CoV-2 are remarkably similar, showing a network that spans the interface of the complex and reaches the active site of ACE2, thus establishing an allosteric connection between RBD binding and receptor catalytic function. Informed in part by the AWD, we used Molecular Dynamics simulations to probe the effect of interfacial mutations in which SARS-CoV-2 residues are replaced by their SARS-CoV counterparts. We focused on a conserved glycine (G502 in SARS-CoV-2, G488 in SARS-CoV) because it belongs to a region that initiates the dissociation of the complex along the dominant detachment mode, and is prominent in the AWD. Molecular Dynamics simulations of SARS-CoV-2 wild-type and G502P mutant show that the affinity for the human receptor of the mutant is drastically diminished. Our results suggest that in addition to residues that are in direct contact with the interface those involved in long range allosteric communication are also a determinant of the stability of the RBD-ACE2 complex.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL